Бездна Челленджера где находится?

Как глубока Бездна Челленджера: измерение глубины

«Надо понимать всю глубину наших глубин» (С) ДМБ

Приветствую вас, глубокоуважаемые!

Всегда поражался, что расстояние до луны измеряется с миллиметровой точностью. Даже при открытии экзопланет методом лучевых скоростей, скорости звезд измеряются с точностью до 0.97 м/с. А вот, например, глубина Бездны Челленджера определена с точностью ± 10 метров.
Почему же с водой все так сложно?

С этим вопросом разбираемся под катом. В качестве вишенки на торт: приложение для визуализации движения звука через воду со слоями разной плотности с исходниками на гитхабе и онлайн-калькулятор.

Напомню, что есть ровно два с половиной фундаментальных способа определения глубины:

  • веревкой =)
  • манометрический, когда глубину определяют по давлению столба жидкости. Принципиальные проблемы, связанные с этим методом я описал в первой части манускрипта. Вкратце: нужно учитывать атмосферное давление, географическую широту (с ней меняется ускорение свободного падения) и изменение плотности воды от температуры, давления и солености.
  • по времени распространения звука — эхолотом.

Вот с последним пунктом сегодня и предлагаю разобраться.

Я люблю всегда рассматривать ситуацию в пределе. Марианская впадина в целом и Бездна Челленджера в частности — это и есть предел ситуации с глубиной на нашей планете. Многие эффекты становятся существенны и отчетливо видны только на больших глубинах.

Итак, история измерения больших глубин берет свое начало от того самого Челленджера — HMS Challenger, чье имя и носит самая глубокая впадина земного океана. Вот, кстати он на фото:

Весной 1875 года экспедиция измерила при помощи веревки глубину, ни много ни мало — 8184 метров. К слову, проблемы измерения глубины веревкой помимо таких очевидных как дрейф судна и течения, описаны в Занимательной Физике у Перельмана: веревка испытывает трение об воду, извивается, скручивается как молекулы белков и вниз, после определенной глубины, уже не идет — не принимает вода ее.

С тех пор люди не сидели без дела и в 1952 году глубины марианской впадины измерял уже HMS Challenger II:

При помощи взрывчатки, ручного секундомера, проволоки с грузом в 20 кг, лома и скотча а также первых эхолокаторов они намерили уже 10900 метров. После постобработки результат уменьшили до 10632 м с неоднозначностью в ± 27 метров.

Раскапывая, или что атмосфернее, погружаясь в историю исследования мирового океана, в одной из прошлых статей я упомянул легендарное советское исследовательское судно «Витязь» — в качестве КДПВ использовал изображение почтовой марки с ним:

В 1957 году «Витязь» измерил самую глубокую глубину наших глубин — 11034 м. Измерения были сделаны на пределе диапазона эхолота исходя из постоянной скорости звука в 1500 м/с, после чего были взяты бутылочные пробы воды для построения профиля температуры и солености, по которым в последствие и было получено значение в 11034 метра. Хоть этот результат и попадается всюду, где речь заходит о марианской впадине, современные специалисты смотрят на него скептически.

Далее в 1960 акванавты с Триеста сообщили об измерениях по бортовому датчику давления 10911 метров, а судно сопровождения, при помощи взрывчатки измерило глубину в 10915 ±20 метров. А уже в 1976 при помощи эхолота получили значение 10933 ± 50 метров.

Откуда берутся все эти ±20 и 50? Вдумчивый читатель скорее всего давно сообразил к чему я клоню — скорость звука в воде зависит от температуры, солености и давления, т.е. от плотности среды.

Профиль температуры и солености — это набор измерений с привязкой к глубине.
И ни температуру, ни соленость нельзя измерить дистанционно — необходимо «сунуть» термометр и кондуктометр в нужную точку океана. Желательно сделать много измерений по линии как можно вертикальнее и через каждый метр.

Вот так выглядят некоторые профили:

Американское исследовательское судно «OCEANUS», 10 апреля 2010.
Место измерения на гуглокартах
Кстати, на этом океанусе даже вебкамера есть.

История измерения самой глубокой точки не бедна и курьёзами

В 1992 году (казалось бы!) участники экспедиции университета Токио измерили глубины, как наши соотечественники в 1957 — исходя из постоянной скорости звука в 1500 м/с, но по какой-то причине не собрали профили температуры и солености. Вместо этого они откорректировали данные по таблицам 1980 (!) года и получили значение в 10933 м без указания погрешностей.

Уже в 2002 экспедиция на судне Keirei Японского агентства науки и технологий по изучению морских недр (JAMSTEC) проводила исследования по поиску глубочайшей глубины при помощи довольно продвинутого многолучевого эхолота. Они получили значение в 10920 ±5 м. Они собрали большое количество профилей, но отказ термометра-кондуктометра вынудил их воспользоваться профилями двухлетней давности.
Японцам периодически не везло.

Позднейшие измерения

В 2008 исследователи из университета Гавайев вот на таком красавце Kilo-Moana

Получили глубину в 10903 метра при помощи многолучевого эхолота EM 120 от Kongsberg Maritime.

В 2010 ученые из университета Нью Хемпшира на USNS Sumner при помощи более новой модели EM 122 от тех же норвежцев получили глубину 10944 ± 40 м в точке (позиция на гуглокартах).

В конечном счете

Неоднозначности при определении глубин при помощи эхолотов есть следствия следующих факторов:

  • Погрешности измерения, которая в свою очередь включает и погрешность самого прибора, его угловое разрешение (луч 1°х1° дает пятно диаметром в 140 метров на дне впадины), размытие пика, рефракцию, качку судна, его перемещение и т.д и т.п.)
  • Наличие и изменчивость профиля скорости звука — его нельзя измерить, положить данные на полку а через два года воспользоваться — такие данные интересны только в ретроспективе, мол, а вот взгляните, тогда было вот так, а сейчас — совсем иначе.
  • Несовершенство методов постобработки

Здесь я могу хочу коснуться только одного из факторов — профиля температуры и солености, или, что в нашем случае почти одинаково — профиля скорости звука.
Просто чтобы наглядно оценить: каков эффект?

Мы принимаем допущение о том, что звук у нас почти как мячик от пинг-понга — путешествует исключительно вертикально, отскакивает от дна весь целиком, корабль неподвижен, дно ровное. Время мы измеряем без погрешностей. И единственное что нас путает — наличие профиля скорости звука.
Как при этом он повлияет на измеряемую глубину?

В этом случае наша модель может быть описана простой формулой:

Где — пройденный звуком путь, — скорость звука в i-й интервал времени, длительность которого .

Если мы уменьшаем (а мы не можем) то дело идет к интегралу из школьной физики:

Далее, исходя из измеренного времени распространения звука (от начала излучения до приема отраженного сигнала) нам нужно:

  • через равные временные промежутки примерно прикидывать глубину (с точностью до десятка-другого метров)
  • интерполировать (если необходимо) из имеющегося профиля температуру и соленость для прикинутой глубины
  • по ней вычислять скорость звука, а соответственно и путь, который звук прошел на этой глубине за временной интервал.

Для этих (и других) целей я запилил библиотеку, про которую говорил в первой части статьи. На данный момент она реализована на C/C#/Rust/Matlab/Octave/JavaScript.

Скорость звука считается по формуле Чена и Миллеро. Она нравится мне потому, что там параметром идет давление, которое измеряется непосредственно, а не глубина, как в других моделях. Плюс диапазон по параметрам у этой модели покрывает почти все разумные случаи.

Например, для второго профиля, который получен в этой точке 10 апреля 2010 года, разница между глубиной, полученной по стандартному значению скорости звука и глубиной, полученной по приведеному выше расчету при времени распространения 5 секунд (туда и обратно) получается 18 метров: 3750 против 3768.3 метров, а для 6 секунд разница возрастает до 32 метров.
К сожалению у меня нет профиля из марианской впадины, и вообще мне пока не попадался ни один профиль глубже 6000 метров. Но если принять, что после 4-5 км глубины параметры меняются слабо и скорость звука в основном меняется из-за давления, то получается, что для обсуждаемых глубин разница получается порядка 420 метров, а время от момента излучения сигнала эхолотом до принятия отражения составляет более 14 секунд.

В качестве демонстрационных материалов имеется:

онлайн-калькулятор, в котором можно вручную ввести профиль или использовать одни из трех, так сказать, hard-coded.

Поскольку я толком ничего не смыслю в JavaScript, то мне проще было сделать спустя рукава визуализацию на C#. Проект я положил на GitHub.
Я знаю, что все знают, но опыт показывает что лучше дать прямую ссылку и на Release

Окно приложения выглядит вот так:

По умолчанию стоит время распространения 5 секунд и какой-то профиль с северной части тихого океана всего из 13 точек.

Справа 4 колонки, в каждой из которых (после нажатия кнопки ANIMATION конечно) звук начинает путешествовать с разной скоростью:

  • в первой — 1500 м/с (стандартное значение для пресной воды),
  • во второй — со скоростью, вычисленной по температуре и солености с поверхности воды,
  • в третьей — со скоростью, вычисленной по средней температуре и солености для профиля
  • в четвертой — с пересчетом скорости для каждого шага и суммирование пройденного пути

Отображение заведено на MMTimer с периодом в 0.01 с, с этим же периодом работает и симуляция.

В меню PROFILE можно выбрать один из трех демо-профилей (в них мало точек), также можно загрузить несколько профилей, выдранных мной из World Ocean Database которую бережливо собирает NOAA.
Эти профили лежат в виде CSV и помимо всего прочего содержат информацию о месте замера, времени, стране, управляющем институте и судне, на котором он производился. Более подробно об этом я писал в статье «Кто и как исследовал мировой океан: разбираем базы NOAA».

Совсем для ленивых (каюсь, я такой же) я собрал GIF-анимацию, но GIF везде отображается по-разному, и «полного эффекта присутствия» не получится:

При написании исторического обзора про исследование марианской впадины я пользовался статьей Джеймса Гарднера с сотоварищами. Крайне рекомендую для интересующихся. Там очень хорошо описаны сложности при измерении, казалось бы, такой «простой» вещи, как глубина.

Хочу поблагодарить всех тех, кто голосовал в предыдущей статье. За то, чтобы появилась эта, было отдано аж 109 голосов — ребята, это для вас! Те двое, кто был против — пардон, я прислушался к мнению большинства.

Марианская впадина: интересные факты

Марианская впадина: UGC

Марианская впадина — одна из малоисследованных точек планеты. Она таит в себе загадку появления жизни на Земле. Впервые на ее дно спустились во второй половине ХХ века, однако до сегодняшнего дня Марианский желоб исследован только на 5%. Прочитайте интересные факты, которые связаны с этим загадочным местом.

Марианская впадина, фото которой отображает лишь небольшую часть величественности и красоты этого природного феномена, — одно из малоисследованных мест на Земле. Поэтому с ней связаны различные домыслы и предположения, фантастические версии ее происхождения и хоррор-истории об обитателях этих подводных глубин.

Где же таится правда, что собой представляет Марианская впадина на карте, кто исследовал ее и что обнаружил на дне?

Фото: YouTube: UGC

Вот самые интересные факты о Марианской впадине:

Местоположение, площадь, происхождение

Марианская впадина образовалась несколько миллионов лет тому в результате разлома земной коры и движения двух литосферных плит. Не многие знают, где находится Марианская впадина, хотя и слышали много увлекательного о ней.

Читайте также  Пятый Океан где находится?

Этот феномен, наряду с Треугольником (Морем) Дьявола, Темехеа-Тохуа, островом Пасхи и лагуной Трук, находится в Тихом океане. Название наибольшему в мире желобу дали соседствующие с ним Марианские острова. Изображение Марианской впадины сверху напоминает полумесяц или букву V. Ее протяженность составляет 2 тыс. км.

Загадочная глубина — «Бездна Челленджера»

Глубина желоба поражает воображение. Ученые установили, что если поместить самую высокую гору мира Эверест в Марианскую впадину, то вершина не достигнет дна.

Определить, где дно разлома, в конце XIX попыталась команда британского судна «Челленджер». Их глубоководный лот показал отметку 8,4 км, а в 1950-х гг. ученые с помощью эхолота открыли новые показатели: оказалось, что глубина Марианской впадины составляет без малого 11 км. Ту часть желоба, которая продемонстрировала эти показатели, назвали «Бездной Челленджера».

Первые исследователи Марианской впадины

Жак Пикар и Дон Уолш — американские морские специалисты и ученые — стали первооткрывателями глубин знаменитого тектонического разлома.

Они совершили в 1960-м году первое удачное погружение в Марианскую впадину. На самоходном аппарате «Триест» исследователи спустились на ее дно. С этого момента одиннадцатикилометровая глубинная точка Марианской впадины стала носить название «Глубина Триеста».

Фото: YouTube: UGC

Самое длительное погружение

Джеймс Кэмерон в 2012 году на батискафе опустился на глубину 10 км 900 м в Марианской впадине. Он стал третьим человеком, который спустился на такую глубину, и первым, кто совершил это в одиночку и пробыл на дне три часа.

Загадка температуры и давления

Известно, что на большие глубины не проникает солнечный свет, поэтому вода не прогревается. В Марианской впадине ближе к дну температура опускается до +1 °С.

Джеймс Кэмерон в бортовом журнале отметил, что градусник показал +2 °С на глубине 5 км. Ему пришлось надеть шерстяные носки, сапоги и шапку, чтобы уберечься от конденсата, который стал быстро появляться на внутренних поверхностях его подводной камеры.

Однако ученые установили, что в Марианской впадине есть гидротермальные жерла, в которых температура воды достигает +370 °С. Что касается давления, то в этом тектоническом разломе оно превышает атмосферное в 1000 раз.

Фото: YouTube: UGC

Удивительные обитатели Марианской впадины

При описанных выше физических показателях остается гадать, что находится в Марианской впадине, кто обитает в ней? Большинство известных организмов попросту погибли бы при таких условиях.

Благодаря погружениям ученые установили разновидности диковинных существ и микроорганизмов, которые поселились здесь. Среди них: глубоководный удильщик (морской черт), морские огурцы (голотурии), рак-отшельник, светящаяся шарообразная медуза, мегалодикопия, двухметровые черви и осьминоги-мутанты.

Каждый из них по-своему приспособился к жизни в темном и холодном пространстве: у кого-то появились фонарики на голове (специальные железы-приманки), кто-то обзавелся гигантским ртом, чтобы ловить зоопланктон и рачков, а у кого-то есть позвоночник и мозг.

Загадочное происхождение и малоисследованный мир Марианской впадины будоражат умы ученых, путешественников, авантюристов и писателей. Ее называют Утробой Геи, о ней пишут романы и научные труды.

Параллель с древнегреческой богиней, которая ассоциировалась с Матерью-Землей, в XXI веке получила научное обоснование. Утроба Геи отображает допущение, которое делают многие исследователи флоры и фауны впадины: считается, что некоторые из ее обитателей могли бы претендовать на звание прародителя человечества.

Уникальная подборка новостей от нашего шеф-редактора

Марианские хроники: как была покорена «бездна Челленджера»

23 января 1960 года управляемый подводный аппарат «Триест» впервые в истории человечества достиг самой глубокой (по крайней мере известной людям) точки Мирового океана: так называемой бездны Челленджера в Марианской впадине, в 500 км от острова Гуам. На борту батискафа находились двое: швейцарский океанолог Жак Пикар и офицер ВМС США Дон Уолш. Спуск на глубину 10 919 м занял 4 часа 48 минут, и проведенные на самом дне Уолшем и Пикаром 20 минут дали науке, пожалуй, не меньше неожиданной информации, чем первый космический полет, — учтем, что на такой головокружительной глубине до «Триеста» бывали разве что лоты-глубиномеры (замеры производили в 1950-е советское океанографическое судно «Витязь» и британский научный корабль «Челленджер», давший имя самому глубокому месту на Земле). «Известия» вспоминают о том невероятном погружении, повторить которое суждено было лишь еще одному человеку.

Задача

К концу 1950-х мир как бы уменьшился в размерах: реактивные пассажирские лайнеры — а на регулярные трассы уже вышли наш Ту-104, французская «Каравелла», британская «Комета» и американский Boeing 707 — сделали авиапутешествия быстрее и доступнее. Военные уже освоили сверхзвуковые скорости, да и первая космическая перестала относиться к мечтаниям фантастов. Человечество уже вырвалось за пределы стратосферы — с орбиты Земли подавали сигналы советские «Спутники» и американские «Эксплореры». В 1959 году автоматическая станция «Луна-2» успешно опустилась на поверхность естественного спутника Земли, а «Луна-3» впервые в истории позволила впервые увидеть его обратную сторону. Было понятно, что до полета в космос человека остаются считаные годы, если не месяцы.

Макет батискафа «Триест»

Но успехи в покорении космоса никак не закрывали собой тот факт, что для людей оставались неизведанными куда более близкие пространства — океанские глубины. Подводные лодки позволяли опускаться на пару сотен метров, а изобретение акваланга сделало знакомство с подводным миром доступным почти каждому желающему — но что таится дальше, на глубине километров, по-прежнему было еще большей тайной, чем открытый космос. Что творится на самых больших глубинах, возможна ли там жизнь и позволяет ли достигнутый после Второй мировой уровень технологий опуститься более чем на километр — эти вопросы волновали ученых. И конечно, военных — как ни парадоксально, но многие прорывы в науке были сделаны именно по причине «милитаристского» любопытства.

Попытки продвинуться в глубину, конечно, предпринимались: в 1953 году глубоководный аппарат «Триест» опустился на 3150 м; спустя год французский FNRS-3 преодолел отметку в 4 км. Конструктором обоих был швейцарский ученый и изобретатель Огюст Пикар, а за штурвалом находился его сын Жак.

Человек

Огюст Пикар (1884–1962) родился в швейцарском Базеле в семье университетского профессора химии. Его брат-близнец Жан пошел по стопам отца, а Огюст выбрал своей специальностью физику — и в 1922-м сам стал профессором Брюссельского университета. В детстве он зачитывался романами Жюля Верна и, став ученым, был чем-то похож на верновского Паганеля.

П. Лятиль, Ж. Ривуар «С небес в пучины моря»

«Представьте себе Пикара, когда он, заложив руки за спину и склонив голову, прохаживается взад и вперед, погруженный в глубокие раздумья, когда он вышагивает, стараясь удержать равновесие, по краю тротуара, — и вчерне его портрет готов. Студенты с веселым изумлением созерцали эту поразительно длинную, поразительно худую, поразительно нескладную фигуру. Теперь вообразите еще и голову с огромным лбом, с маленьким подбородком, с густой вьющейся шевелюрой и тонкой шеей, выступающей из слишком широкого воротника».

Так описывал профессора один из его бывших студентов. Кстати, именно с Пикара «срисовал» своего профессора Турнесоля знаменитый бельгийский карикатурист и художник комиксов Эрже, создатель отважного журналиста Тин-Тина и его друзей. Джин Родденберри, подаривший нам мир «Стар Трека», дал фамилию Пикар одному из командиров звездолета «Энтерпрайз» тоже в честь сумасбродного профессора — и его сына Жака.

Огюст Пиккар в гондоле стратостата FNRS-1

До пятого десятка Огюст Пикар вел жизнь почти кабинетного ученого. «Почти» — потому что он не только занимался лабораторными исследованиями урана и разработкой способов получения искусственных алмазов, но и совершал полевые вылазки на ледники своей родной Швейцарии, изучая их физические характеристики. Во второй половине 1920-х его захватила мысль об исследованиях стратосферы — и вскоре он разработал и построил первый в мире аппарат для исследования верхних слоев атмосферы. Более того, в мае 1931 года 47-летний профессор сам не побоялся совершить первый полет на спроектированном им стратостате FNRS-1 (вместе со своим молодым ассистентом Паулем Кипфером) — и поставил рекорд, достигнув высоты 15 785 м. В дальнейшем Пикар поднимался в заоблачные выси еще 26 раз, на высоту до 23 км.

В середине 1930-х Пикар понял, что концепция аппарата с герметичной гондолой, соединенной с «поплавком», пригодна не только для воздушной, но и для водной среды. Свое новое детище он назвал «батискаф», от греческих слов «глубокий» и «корабль». Проект был готов уже в 1937-м, но строительству помешала война — и первый батискаф, FNRS-2, был спущен на воду лишь в 1946 году. «Триест» (названный так в честь итальянского города, где шла сборка аппарата) стал второй, усовершенствованной моделью подводного судна Пикара.

Революционность конструкции Пикара состояла в автономности батискафа. В отличие от батисфер, использовавшихся для рекордных погружений с конца XIX века и опускавшихся в воду при помощи стального троса, батискаф был практически полностью автономен — положительную плавучесть обеспечивали емкости с бензином (который к тому же успешно противостоял давлению на глубине), а спуск и подъем осуществлялся при помощи балласта, подобно аэростату. Сброс чугунной или стальной дроби производился открыванием электромагнитной задвижки, что добавляло и гарантий безопасности — в случае ЧП, после полной разрядки батарей (запас энергии составлял 24 часа), задвижки гарантированно открывались.

Пикар, по своему обыкновению, лично участвовал в нескольких погружениях — управлял батискафами его сын, океанолог Жак. Последний раз ученый, которому уже исполнилось 69, опустился на борту «Триеста» на глубину 3150 м. Вскоре исследованиями заинтересовались американские военные, согласившиеся купить «Триест-2» и финансировать рекордное погружение, получившее кодовое название «проект «Нектон». Для «Триеста» была заказана новая гондола из сверхпрочной стали заводов «Крупп». Сам аппарат был доработан с учетом ожидаемых на глубине 11 км сверхвысокого давления и низкой температуры. К началу 1960 года всё было готово для решающего погружения.

Погружение

Утром 21 января 1960 года место в гондоле «Триеста» заняли Жак Пикар и лейтенант ВМС США Дон Уолш. После нескольких технических остановок для стравливания бензина, с глубины 200 м погружение пошло без остановок — и без каких-либо приключений. В 13:06 по времени Гуама конец гайдропа (стального каната, использовавшегося в качестве тормоза для плавной остановки батискафа) коснулся дна «бездны Челленджера». Выпустив еще часть бензина, исследователи «приземлили» батискаф.

Была замерена температура забортной воды — 3,3°С (в самой гондоле было тоже не жарко — всего лишь 4,5 градуса), радиационный фон, а также внутренний диаметр гондолы — оказалось, что под воздействием давления воды он уменьшился на 3 мм. Пикар и Уолш уверяли, что видели в иллюминатор плоскую рыбу, вроде камбалы, и существо, похожее на креветку, что доказывало возможность существования на такой глубине достаточно сложных, даже позвоночных, форм жизни — однако многие биологи поставили под сомнение наблюдения гидронавтов.

«Триест» находился на дне около 20 минут, когда Пикар заметил, что стекло иллюминатора начало давать трещину. Была дана команда на экстренное всплытие, и спустя 3 часа 27 минут батискаф показался на поверхности. В дальнейшем аппарат после модернизации (он был оснащен в числе прочего телекамерой и манипулятором) использовался флотом США для поисковых операций — в частности, именно при помощи «Триеста» были обнаружены останки пропавшей в 1963 году в Атлантике атомной подлодки «Трешер». Затем батискаф был списан и сейчас хранится в морском музее Вашингтона.

Читайте также  Города рядом с Миланом которые стоит посмотреть?

С тех пор в «бездну» удалось спуститься еще лишь одному человеку — в марте 2012 года на борту аппарата Deepsea Challenger там побывал знаменитый режиссер Джеймс Кэмерон. Его путешествие на дно заняло всего лишь два часа, зато на месте Кэмерон провел шесть часов, собрав образцы грунта (в котором было обнаружено 68 видов до того неизвестных науке организмов) и сделав фото- и видеосъемки. И кстати, подтвердив существование того самого существа, похожего на креветку, оказавшегося рачком-бокоплавом.

Марианская впадина: куда пропадают тонны воды?

В то время, как на самой высокой точке планеты, Эвересте, побывали тысячи человек, на дно Марианской впадины спустились лишь трое. Это самое малоизученное место на Земле, вокруг него существует множество загадок. На прошлой неделе геологи выяснили, что за миллион лет через разлом на дне впадины в недра Земли проникло 79 млн т воды.

Что произошло с ней после этого, неизвестно. «Хайтек» рассказывает о геологическом строении самой низкой точки планеты и о странных процессах, которые происходят на ее дне.

Без солнечных лучей и под колоссальным давлением

Марианская впадина — не вертикальная бездна. Это желоб в форме полумесяца, растянувшийся на 2,5 тыс. км к востоку от Филиппин и к западу от Гуаме, США. Самая глубокая точка впадины, бездна Челленджера, находится на расстоянии 11 км от поверхности Тихого океана. Эвересту, окажись он на дне впадины, до уровня моря не хватило бы 2,1 км.

Карта Марианской впадины.

Марианский желоб (как еще принято называть впадину) — часть глобальной сети прогибов, пересекающих морское дно и образовавшихся в результате древних геологических событий. Они возникают при столкновении двух тектонических плит, когда один пласт погружается под другой и уходит в мантию Земли.

Подводную траншею обнаружил британский исследовательский корабль «Челленджер» во время первой глобальной океанографической экспедиции. В 1875 году ученые попытались измерить глубину диплотом — веревкой с привязанным к ней грузом и метровой разметкой. Веревки хватило только на 4 475 морских саженей (8 367 м). Спустя почти сто лет судно «Челленджер II» вернулось к Марианской впадине с эхолотом и установило нынешнее значение глубины — 10 994 м.

Дно Марианской впадины скрыто в вечной темноте — солнечные лучи не проникают на такую глубину. Температура всего на несколько градусов выше нуля — и близка к точке замерзания. Давление в бездне Челленджера составляет 108,6 МПа, что примерно в 1 072 раза больше нормального атмосферного давления на уровне Мирового океана. Это в пять раз больше давления, которое создается при ударе пули о пуленепробиваемый объект и примерно равно давлению внутри реактора для синтеза полиэтилена. Но люди нашли способ добраться до дна.

Человек на глубине

Первыми людьми, побывавшими в бездне Челленджера, стали американские военные Жак Пиккар и Дон Уолш. В 1960 году на батискафе «Триест» они за пять часов спустились на 10 918 м. На этой отметке исследователи провели 20 минут и почти ничего не увидели из-за облаков ила, поднятых аппаратом. Кроме рыбы из вида камбалообразных, на которую попал луч прожектора. Наличие жизни под таким высоким давлением стало главным открытием миссии.

До Пиккара и Уолша ученые считали, что в Марианском желобе не могут жить рыбы. Давление в нем настолько велико, что кальций может существовать только в жидком виде. Это значит, что кости позвоночных должны буквально растворяться. Нет костей, нет и рыб. Но природа показала ученым, что они ошибаются: живые организмы способны адаптироваться даже к таким невыносимым условиям.

Множество живых организмов в бездне Челленджера обнаружил батискаф Deepsea Challenger, на котором в 2012 году на дно Марианской впадины в одиночку спустился режиссер Джеймс Кэмерон. В образцах грунта, взятых аппаратом, ученые нашли 200 видов беспозвоночных, а на дне впадины — странных полупрозрачных креветок и крабов.

На глубине 8 тыс. м батискаф обнаружил самую глубоководную рыбу — нового представителя вида липаровых или морских слизней. Голова рыбы напоминает собачью, а ее тело очень тонкое и эластичное — во время движения она напоминает полупрозрачную салфетку, которую несет течением.

На несколько сотен метров ниже живут гигантские десятисантиметровые амебы, называемые ксенофиофоры. Эти организмы демонстрируют удивительную устойчивость к нескольким элементам и химическим веществам, таким как ртуть, уран и свинец, которые убили бы других животных или человека за несколько минут.

Ученые считают, что на глубине существует еще множество видов, ожидающих открытия. Кроме того, до сих пор не ясно, как такие микроорганизмы — экстремофилы — могут выживать в столь экстремальных условиях.

Ответ на этот вопрос приведет к прорыву в биомедицине и биотехнологиях и поможет понять, как зародилась жизнь на Земле. Например, исследователи из Университета Гавайев полагают, что грязевые термальные вулканы вблизи впадины могли обеспечить условия для выживания первых организмов на планете.

Вулканы на дне Марианской впадины.

Что за разлом?

Впадина обязана своей глубиной разлому двух тектонический плит — тихоокеанский пласт уходит под филлипинский, образуя глубокий желоб. Регионы, в которых произошли такие геологические события, называют зоной субдукции.

Толщина каждой плиты составляет почти 100 км, а глубина разлома — по меньшей мере 700 км от самой нижней точки бездны Челленджера. «Это айсберг. Человек даже не был на вершине — 11 ничто по сравнению с 700, скрывающимися на глубине. Марианская траншея — это граница между пределами человеческих знаний и реальностью, которая недоступна человеку», — рассказывает геофизик Роберт Стерн из Техасского университета.

Плиты на дне Марианской впадины.

Ученые предполагают, что через зону субдукции в мантию Земли попадает вода в больших объемах — скалы на границах разломов действуют, как губки, поглощая воду, и транспортируют ее в недры планеты. В результате вещество оказывается на глубине от 20 до 100 км ниже морского дна.

Геологи из Университета Вашингтона выяснили, что за последний миллион лет через стык в недра земли попало более 79 млн т воды — это в 4,3 раза больше предыдущих оценок.

Главный вопрос — что происходит с водой в недрах. Считается, что водный цикл замыкают вулканы, возвращая воду в атмосферу в виде водяного пара во время извержений. Эта теория подтверждалась предыдущими измерениями объемов воды, проникающих в мантию. Вулканы выбрасывали в атмосферу примерно равный поглощенному объем.

Новое исследование опровергает эту теорию — подсчеты свидетельствуют о том, что Земля поглощает больше воды, чем возвращает. И это действительно странно — при условии, что уровень Мирового океана за последние несколько сотен лет не только не уменьшился, но и вырос на несколько сантиметров.

Возможное решение — отказ от теории равных пропускных возможностей всех зон субдукции на Земле. Вероятно, условия в Марианском желобе более экстремальные, чем в других частях планеты, а через разлом в бездне Челленджера в недра проникает больше воды.

«Зависит ли количество воды от особенностей строения зоны субдукции, например, от угла изгиба плит? Мы предполагаем, что аналогичные разломы существуют на Аляске и в Латинской Америке, но пока человеку не удалось обнаружить более глубокой структуры, чем Марианская впадина», — добавил ведущий автор исследования Даг Винес.

Вода, скрывающаяся в недрах Земли, — не единственная загадка Марианской впадины. Национальное управление океанических и атмосферных исследований США (NOAA) называет регион парком развлечений для геологов.

Это единственное место на планете, где углекислый газ существует в жидкой форме. Он выбрасывается несколькими подводными вулканами, расположенными за пределами Окинавского прогиба вблизи Тайваня.

На глубине 414 м в Марианской впадине находится вулкан Дайкоку, который представляет собой озеро чистой серы в жидкой форме, которая постоянно кипит при температуре 187 °С. На 6 км ниже располагаются геотермальные источники, выбрасывающие воду при температуре 450 °С. Но эта вода не кипит — процессу мешает давление, оказываемое 6,5-километровым водным столбом.

Океаническое дно на сегодня изучено человеком меньше, чем Луна. Вероятно, ученым удастся обнаружить разломы глубже Марианской впадины или, по меньшей мере, исследовать ее строение и особенности.

10 интересных фактов о Марианской впадине — самом глубоком месте на Земле

Несмотря на то, что океаны ближе к нам, чем отдаленные планеты Солнечной системы, люди исследовали всего пять процентов дна океана, которое остается одной из величайших загадок нашей планеты.

Самая глубокая часть океана — Марианская впадина или Марианский желоб является одним из самых известных мест, о котором мы все же знаем не очень много.

При давлении воды, которое в тысячу раз больше чем на уровне моря, погружение в это место является сродни самоубийству.

Но благодаря современным технологиям и нескольким смельчакам, которые, рискуя жизнью, спустились туда, мы узнали много интересного об этом удивительном месте.

Марианская впадина на карте. Где она находится?

Марианская впадина или Марианский желоб находится в западной части Тихого океана к востоку (примерно 200 км) от 15-ти Марианских островов возле Гуама. Она представляет собой желоб в форме полумесяца в земной коре длиной около 2550 км и шириной в среднем 69 км.

Координаты Марианской впадины: 11°22′ северной широты и 142°35′ восточной долготы.

Глубина Марианской впадины

Согласно последним исследованиям 2011 года глубина самой глубокой точки Марианской впадины составляет около 10 994 метра ± 40 метров. Для сравнения высота самой высокой вершины мира — Эвереста составляет 8 848 метров. Это значит, что если бы Эверест оказался в Марианской впадине, то он был бы покрыт еще 2,1 км воды.

Вот другие интересные факты о том, что можно встретить по пути и на самом дне Марианской впадины.

Температура на дне Марианской впадины

1. Очень горячая вода

Спускаясь на такую глубину, мы ожидаем, что там будет очень холодно. Температура здесь достигает чуть выше нуля, варьируя от 1 до 4 градусов по Цельсию.

Однако на глубине около 1,6 км от поверхности Тихого океана находятся гидротермальные источники, называемые «черные курильщики». Они выстреливают воду, которая нагревается до 450 градусов по Цельсию.

Эта вода богата минералами, которые помогают поддерживать жизнь в этой области. Несмотря на температуру воды, которая на сотни градусов выше точки кипения, она здесь не закипает из-за невероятного давления, в 155 раз выше, чем на поверхности.

Обитатели Марианской впадины

2. Гигантские токсичные амебы

Несколько лет назад на дне Марианской впадины обнаружили гигантских 10-ти сантиметровых амеб, называемых ксенофиофоры.

Эти одноклеточные организмы, вероятно, стали такими большими из-за среды, в которой они обитают на глубине 10,6 км. Холодная температура, высокое давление и отсутствие солнечного света, скорее всего, способствовали тому, что эти амебы приобрели огромные размеры.

Кроме того, ксенофиофоры обладают невероятными способностями. Они устойчивы к воздействию множества элементов и химических веществ, включая уран, ртуть и свинец, которые убили бы других животных и людей.

Сильное давление воды в Марианской впадине не дает шанса на выживание ни одному животному с раковиной или костями. Однако в 2012 году в желобе возле серпентиновых гидротермальных источников были обнаружены моллюски. Серпентин содержит водород и метан, который позволяет формироваться живым организмам.

Читайте также  Русские диаспоры в мире

Каким образом моллюски сохранили свою раковину при таком давлении, остается неизвестным.

Кроме того, гидротермальные источники выделяют другой газ – сероводород, который смертелен для моллюсков. Однако они научились связывать сернистое соединение в безопасный белок, что позволило популяции этих моллюсков выжить.

На дне Марианской впадины

4. Чистый жидкий углекислый газ

Гидротермальный источник Шампань Марианской впадины, который находится за пределами желоба Окинава возле Тайваня, является единственной известной подводной областью, где можно обнаружить жидкий углекислый газ. Источник, открытый в 2005 году, получил свое название в честь пузырьков, которые оказались диоксидом углерода.

Многие считают, что эти источники, названные «белыми курильщиками» из-за более низкой температуры, могут быть источником жизни. Именно в глубине океанов с низкой температурой и обилием химических веществ и энергии могла зародиться жизнь.

Если бы у нас была возможность проплыть на самую глубину Марианской впадины, то мы почувствовали бы, что она покрыта слоем вязкой слизи. Песок, в привычном нам виде, там не существует.

Дно впадины в основном состоит из измельчённых раковин и остатков планктона, которые скапливались на дне впадины в течение многих лет. Из-за невероятного давления воды, практически все там превращается в мелкую серовато-желтую густую грязь.

Марианский желоб

6. Жидкая сера

Вулкан Дайкоку, который находится на глубине около 414 метров на пути к Марианской впадине, является источником одного из самых редких явлений на нашей планете. Тут находится озеро чистой расплавленной серы. Единственным местом, где можно обнаружить жидкую серу, является спутник Юпитера – Ио.

В этой яме, названной «котлом», бурлящая черная эмульсия кипит при 187 градусах по Цельсию. Хотя ученым не удалось исследовать это место детально, возможно глубже содержится еще больше жидкой серы. Это может раскрыть секрет происхождения жизни на Земле.

Согласно гипотезе Геи, наша планета является одним самоуправляемым организмом, в котором все живое и неживое соединено для поддержания ее жизни. Если эта гипотеза верна, то ряд сигналов можно наблюдать в естественных циклах и системах Земли. Так соединения серы, созданные организмами в океане, должны быть достаточно стабильны в воде, чтобы позволить им перейти в воздух, и вновь вернуться на сушу.

В конце 2011 года в Марианской впадине было обнаружено четыре каменных моста, которые простирались с одного до другого конца на 69 км. Похоже, что они сформировались на стыке Тихоокеанских и Филиппинских тектонических плит.

Один из мостов Dutton Ridge, который был открыт еще 1980-х годах, оказался невероятно высоким, как небольшая гора. В самой высокой точке, хребет достигает 2,5 км над «Бездной Челленджера».

Как и многие аспекты Марианской впадины, предназначение этих мостов остается неясным. Однако сам факт того, что в одном из самых загадочных и неизведанных мест, обнаружили эти формирования, является удивительным.

8. Погружение Джеймса Кэмерона в Марианскую впадину

Начиная с открытия самого глубокого места Марианской впадины — «Бездны Челленджера» в 1875 году, здесь побывало всего три человека. Первыми были американский лейтенант Дон Уолш и исследователь Жак Пикар, которые совершили погружение 23 января 1960 года на судне «Триест».

Через 52 года сюда отважился погрузиться еще один человек – известный кинорежиссер Джеймс Кэмерон. Так 26 марта 2012 года Кэмерон спустился ко дну и сделал несколько фотографий.

Во время погружения Джеймса Кэмерона в 2012 году к «Бездне Челленджера» на батискафе DeepSea Challenge , он пытался наблюдать за всем, что происходит в этом месте, пока механические неполадки не вынудили его подняться на поверхность.

Пока он был в самой глубокой точке мирового океана он пришел к шокирующему выводу о том, что он был абсолютно один. В Марианской впадине не было страшных морских монстров или каких-то чудес. Согласно Кэмерону самое дно океана было «лунным…пустым…одиноким», и он чувствовал «полную изоляцию от всего человечества«.

9. Марианская впадина (видео)

10. Марианская впадина в океане – самый большой заповедник

Марианская впадина является национальным памятником США и самым крупным морским заповедником в мире.

Так как он является памятником, существует ряд правил для тех, кто хочет посетить это место. В пределах ее границ, рыболовство и добыча полезных ископаемых здесь строго запрещена. Однако плавать здесь разрешено, так что вы можете стать следующим, кто решится отправиться в самое глубокое место в океане.

Марианская впадина — интересные факты

еловечество очень интенсивно изучает Солнечную систему, галактику Млечный Путь, Вселенную, однако, на собственной Земле есть некоторые места, которые очень мало изучены. Таким местом является Мировой океан — лишь 5 процентов всей водной массы были изучены. Марианская впадина или, как еще называют, желоб — глубочайшая точка в Мировом океане, ее глубина составляет чуть меньше 11 километров — 10 км 994 м. Это место изучено не досконально из-за огромной площади, давление, экстремальных скачков температур. Если погрузить Эверест — наивысшую точку планеты — на дно Марианской впадины, то гора высотой в 8848 метров, погрузится полностью и вода покрыла бы его более чем на два километра. Кстати, Марианская впадина — самый большой морской заповедник на Земле. Там запрещено рыболовство и добыча полезных ископаемых. Представляем интереcные факты о Марианской впадине.

Географическое положение и литосферные плиты

Находится Марианская впадина в западной области Тихого океана, недалеко (за 200 километров) от одноименных островов — Марианских. Глубочайшая точка желоба имеет название Бездна Челленджера в честь английского гидрографичского судна Челленджер 2, который впервые измерил глубину желоба. Расположена Бездна в 1800 километров восточнее Филиппинских островов и в пятистах километрах юго-западнее от Марианского острова Гуам.

Марианская впадина расположена на стыке Филиппинской и Тихоокеанической плиты. Постоянное движение литосферных плит, при котором Тихоокеанская плита, как более тяжелая и старая, как бы подползает под Филиппинскую. От чего, как бы необычно звучало, в желобе образовались горы. Всего таких хребтов (или, как называют иначе, «мостов») четыре, простирающиеся на 69 километров, а образовались они около 180 миллионов лет назад. Наивысшая точка этого образования — 2,5 километра.

Глубины и что в них происходит

От поверхности воды до глубины 200 метров расположена эвфотическая зона. Солнечный свет освещает толщу воды, а на нижней границе попадания света составляет один процент. Глубина 4,5 метров является стандартной глубиной для олимпийских бассейнов, а 40 метров — глубина самого глубокого плавательного бассейна для дайвинга — Y-40, находящегося в Италии. Кстати, эта глубина — максимальная, для дайвингов-любителей. На глубине 60 метров обитают касатки, а человек уже может увидеть галлюцинации. При слишком быстром всплытии на глубине сотни метров может развиться декомпрессионная (кессонная) болезнь; на этой же глубине обитают и тихоокеанские осьминоги.

В сумеречную зону, которая начинается с двухсот метров, свет попадает уже очень плохо. Максимум на пятистах метрах можно встретить голубого кита, а императорские пингвины максимально могут погрузиться аж на 535 метров! Давление в сумеречной зоне будет такое, как будто на вас встал белый медведь. И именно в этой зоне, на глубине 610 метров, заканчивается возможность человека доплыть в нормобарическом скафандре. На нижней границе зоны, на глубине девятисот метров, можно встретить гигантского кальмара.

На глубине один километр начинается полуночная зона, и свет с поверхности не доходит вообще. Давление при этом настолько огромное, как будто человек побывал на Венере. На эту зону иногда опускаются и кашалоты — в 1951 году было зарегистрировано, что один из млекопитающих доплыл до 2200 метров. На глубине 1,6 километров есть гидротермальные источники с горячими потоками более 450 оС, так же называющиеся «черные курильщики». Однако, из-за высокого давления, вода не закипает.

Абиссальная зона, или просто абиссаль, начинается на глубине 4 тысяч метров. Давление в данной зоне ошарашивает — 775 кг/см2, температура при это достигает +2 оС. Но, несмотря на условия, тут все же живут морские обитатели — чудовищные рыбы-гадюки, морские черти и саблезубы.

Глубже шести километров начинается ультрааббисальная зона, давление в которой в 1100 раз превышает привычное нам давление. Кстати, коммерческие самолеты летают в среднем на высоте 10970 метров, так что очень легко представить человеку, который летал когда-либо, на сколько глубока Марианская впадина, дно которой располагается на 10994 метров.

Жители Марианской впадины

На дне Марианской впадины обитают ксенофиофоры — амебы, чье тело достигает длины 10 сантиметров! Эти одноклеточные спокойно себе живут, а такие гигантские размеры достигли благодаря жесточайшим условиям окружающей среды — холодной температуре, давлению и полной тьме. Так же они очень живучие: ртуть, уран, свинец, которые смертельно опасны для живых существ, они воспринимают нормально.

В 2012 году были обнаружены моллюски около серпентиновых гидротермальных источников. Благодаря этим источникам эти моллюски и смогли там выжить, так как метан и водород помогают сформироваться живым организмам. Хоть источники также содержат и сероводород, что смертельно для живых организмов, моллюски, благодаря эволюции, научились спасаться от опасности, сворачивая в безопасный белок сернистое соединение. Однако, за счет чего эти животные смогли сохранить свою раковину, пока неизвестно.

Исследование дна Марианской впадины

Современные измерения глубины Марианской впадины происходит прибором эхолотом, содержащий ультразвуковой передатчик и приёмник. Проблематичность в получении точных данных основана на том, что на разных глубинах вода имеет разные свойства, которые влияют на скорость звука. Поэтому, при получении результатов эхолота, вносятся поправки. Для поправок делают измерения батометрами и термометрами.

Однако, открытие Марианской впадины было осуществлено в 1875 году английским судном «Челленджер», когда еще эхолоты не были изобретены. Благодаря прибору лоту, который позволяет измерять глубину, англичане установили глубину, конечно, которая не совпадает с реальной, но все же очень впечатлительную — 8367 метров. Чуть меньше, чем через век, в 1951 году, их земляки так же измерили глубину желоба, но только уже эхолотом. Их измерения составили 10863 метров, что немного не дотягивало до действительной глубины.

А вот советские исследователи немного «увеличили» желоб. В 1957 году научно-исследовательским судном «Витязь» были получены результаты, по котором глубина Марианской впадины была 11020 метров. В 1995 году показатели глубины были 10?920 метров, а в 2009 чуть больше — 10971. Последние данные, которые имеют ученые, — это 10994 м с погрешностью ± 40 м.

Джеймс Кэмерон и его погружение

В самой глубокой точки Мирового океана за всю историю человечества побывало три человека. В 1960 году впервые спустились в желоб американцы: исследователь Жак Пир и лейтенант Дон Уолш. Совершили путешествие они на «Триесте». Зафиксированная ими глубина в 10916 м, получила название «глубина Триеста».

В последнее десятилетие среди четырех компаний велась борьба за возможность отправить судно с человеком внутри. В ней участвовал так же канадский кинорежиссер Джеймс Кэмерон, он и победил в состязании. И уже 26 марта 2012 на аппарате Deepsea Challenger режиссер достиг дна Бездны Челленджера, тем самым став третьим человеком, побывавший на столь большой глубине.

Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов